Extensions 1→N→G→Q→1 with N=C3 and Q=D4×C32

Direct product G=N×Q with N=C3 and Q=D4×C32
dρLabelID
D4×C33108D4xC3^3216,151

Semidirect products G=N:Q with N=C3 and Q=D4×C32
extensionφ:Q→Aut NdρLabelID
C31(D4×C32) = C32×D12φ: D4×C32/C3×C12C2 ⊆ Aut C372C3:1(D4xC3^2)216,137
C32(D4×C32) = C32×C3⋊D4φ: D4×C32/C62C2 ⊆ Aut C336C3:2(D4xC3^2)216,139

Non-split extensions G=N.Q with N=C3 and Q=D4×C32
extensionφ:Q→Aut NdρLabelID
C3.1(D4×C32) = D4×C3×C9central extension (φ=1)108C3.1(D4xC3^2)216,76
C3.2(D4×C32) = D4×He3central stem extension (φ=1)366C3.2(D4xC3^2)216,77
C3.3(D4×C32) = D4×3- 1+2central stem extension (φ=1)366C3.3(D4xC3^2)216,78

׿
×
𝔽